Problems of SLP and WLP (revised Aug. 18, 2012.)

September 10, 2012, Honolulu, Hawaii

Junzo Watanabe

This is a list of problems most of which I asked myself and I have been unable to answer. Some problems should be answered immediately by specialists.

Problems on Strong Lefschetz property

1. Suppose that $A=\oplus_{i=1}^{c} A_{i}$ is a complete intersection, where $A_{0}=K$ is a field, and $A=K\left[A_{1}\right]$.
(a) Prove that A has the Sperner Property.
(b) If characteristic of K is 0 , prove that A has the SLP.
2. Suppose that $A=\oplus_{i=1}^{c} A_{i}$ is a Gorenstein ring, where $A_{0}=K$ is a field of characteristic 0 , and $A=K\left[A_{1}\right]$. Suppose that the symmetric group acts on A as the permutation of variables.
(a) Prove that A has the Sperner Property.
(b) If characteristic of K is 0 , prove that A has the SLP.
3. Let $A=\oplus_{i=0}^{c} A_{i}=K\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1}^{d_{1}}, \cdots, x_{n}^{d_{n}}\right)$ is a monomial complete intersection. Put $L=x_{1}+\cdots+x_{n}$, and let M_{i} be the matrix for the multiplication map $L^{c-2 i}: A_{i} \rightarrow A_{c-i}$ on the bases of monomials. Compute the determinant of M_{i}.
The determinant det M_{i} is known if either $n=2$ or $d_{1}=d_{2}=\cdots=d_{n}=2$.
4. (Assume that char $K=0$.) In $K\left[x_{1}, \cdots, x_{n}\right]_{d}$, how is it possible to choose a set of n algebraically dependent elements

$$
f_{1}, f_{2}, \cdots, f_{n}
$$

such that any $n-1$ elements in it are algebraically independent. Say anything about this statement. For the time being it is enough to assume that $n=3$.
The necessity of this question arises from a desire to determine the forms in 6 variables with zero Hessian. See the following problem.
Assume that three elements $f, g, h \in K\left[x_{1}, x_{2}\right]_{d}$ are linearly independent. (Automatically they are algebraically dependent.) Introduce three indeterminate x_{3}, x_{4}, x_{5} and let $F=f x_{3}+g x_{4}+h x_{5}$. Then the Hessian determinant F vanishes but no variables can be eliminated from F by means of a linear transformation of the variables. In other words $\frac{\partial F}{\partial x_{1}}, \cdots, \frac{\partial F}{\partial x_{5}}$ are linearly independent. Moreover any polynomial in $K\left[x_{1}, x_{2}\right][F]$ has zero Hessian. These exhaust homogeneous polynomials in five variables with zero Hessian which involve 5 variables properly(Gordan-Noether). Bearing this in mind go to the next problem.
5. Determine the homogeneous polynomials whose Hessian identically vanishes in

$$
K\left[x_{1}, \cdots, x_{6}\right] .
$$

Suppose that $F=F\left(x_{1}, \cdots, x_{6}\right)$ is a form with zero Hessian. We say that F reduces (to a form in less than 6 variable) if $F \bmod$ (a linear form) is a form with zero Hessian.
Choose three elements $(f, g, h) \subset K\left[x_{1}, x_{2}, x_{3}\right]_{d}$ that are linearly independent. Assume that f, g, h are algebraically dependent. E.g. $f=x_{1}^{4}, g=x_{1}^{2} x_{2} x_{3}, h=x_{2}^{2} x_{3}^{2}$. Assume that

$$
\begin{equation*}
\left(\frac{\partial(f, g, h)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}\right) \tag{1}
\end{equation*}
$$

has rank 2. Introduce three variables x_{4}, x_{5}, x_{6} and let $F=f x_{4}+g x_{5}+h x_{6}$. Then any polynomial in $K\left[x_{1}, x_{2}, x_{3}\right][F]$ has zero Hessian. (This is a fact easily verified.)
I conjecture simple-mindedly that these exhaust all homogeneous polynomial $F^{\prime} \in$ $K\left[x_{1}, \cdots, x_{6}\right]$ which has zero Hessian which does not reduce to a five variable form with zero Hessian.
Moreover I conjecture that F reduces to a five variable case if and only if

$$
\operatorname{corank}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)>1
$$

Problems on weak Lefschetz property

6. Assume that char $K=0$. Let $K\left[x_{1}, \cdots, x_{n}\right]$ be the polynomial ring. Let $I \subset R$ be a homogeneous ideal. Let m be the homogeneous maximal ideal. Define the ideals I_{i} for $i=0,1, \cdots$ inductively as follows: $I_{0}=I, I_{i}=m I_{i-1}: y$, where y is a general element of R. Let $J=\cup I_{i}$. Prove that

$$
\mu(J)=\operatorname{length} R /(m I+(y)) .
$$

(We have not found a counter example in characteristic $K=0$ and $n \leq 4$.) If $n=5$, Murai gave a counter example. So this is a problem only for $n \leq 4$. Once this is proved then it implies that an ideal I has the Rees property if and only if I is m-full in the polynomial ring.
In 1987, I discussed the problem of Rees for $n=3$, which asks for what ideal I is it true that $\mu(I) \geq \mu(J)$ for all ideals J such that $J \supset I$ with Craig Huneke. We tried to prove that I has this property if and only if I is m -full in three variable case. We were unable to prove or disprove it. Huneke's comment: This is too good to be true.
(This part was added later:) Murai found a counter example to this "conjeture" even in $n=3$. So it seems that there are many Artinian algebras with (1) Unimodal Hilbert function and (2) Sperner property but without WLP.)

Problems of commutative rings

7. Let A be an Artinian local ring. Then it holds that

$$
\mu\left(m^{j}\right) \leq d(A) \leq \operatorname{length}(A / y A)
$$

where j is a non-negative integer and y is a general element. For which A does it fails to have the the second equality? All people seem to have been too busy with the equality

$$
\mu\left(m^{j}\right)=\operatorname{length}(A / y A)
$$

and there are not many papers on the second equality.
8. Let $R=K\left[x_{1}, \cdots, x_{n}\right]$ and $m=\left(x_{1}, \cdots, x_{n}\right)$. Suppose that R / I does not have the WLP. Let $J=m I$. Does R / J have the WLP?
The reason I am interested in this problem is this: I conjecture that $d(R / m I)=$ length $R / m I+l R$, where I is an arbitrary (homogeneous) maximal primary ideal and l is a general linear element. If I am to find a counter-example to this conjecture, a good candidate is I such that R / I does not have the WLP.
9. What is the module M of finite length with

$$
\tau(M)=\mu(M)
$$

10. Suppose that $\left(x_{i j}\right)$ is the $r \times s$ generic matrix. Let $R=K\left[\left\{x_{i j}\right\}\right]$ be the polynomial ring. Let M be the cokernel of the map $R^{s} \rightarrow R^{r}$ defined by the homomorphism $\left(x_{i j}\right)$. When does this have a symmetric minimal free resolution? (This should be known.) Suppose this is the case. Let \bar{M} be the reduction of M by a regular sequence consisting of linear forms. Then we should have

$$
\tau(\bar{M})=\mu(\bar{M})
$$

Does \bar{M} have the SLP?
11. Suppose that K is a field of characteristic zero. Suppose that K contains enough transcendental elements over . Let $R=K\left[x_{1}, \cdots, x_{n}\right]$ be the polynomial ring. (It is possible to define a generic complete intersection.) Suppose that R / I is a generic complete intersection. How can we conclude that R / I has the SLP?

Problems of polynomial rings over a field of characteristic zero

12. What is a good reference for the following?

Let $R=K\left[x_{1}, \cdots, x_{n}\right]$ be the polynomial ring over K. Suppose that f_{1}, \cdots, f_{n} be a sequence of homogeneous polynomials (say of the same degree).
Let r be the transcendence degree of the function field $K\left(f_{1}, \cdots, f_{n}\right)$. Then r equals the rank of the matrix

$$
\begin{equation*}
\left(\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}\right) \tag{2}
\end{equation*}
$$

13. Suppose that M is a graded module of finite colength over a $K\left[x_{1}, \cdots, x_{n}\right]$. Assume that $\operatorname{Ext}_{R}^{n}(M, R)(-n) \cong M$. Under what condition can we prove that M has the SLP? For general n this is too difficult. Can we say anything if $n=2$? This helps us understand the SLP of Gorenstein algebras in embedding codimension three.
Can we say anything about such M, if M is generated by two elements.
14. Suppose that A is a standard Artinian Gorenstein algebra. Generally speaking $A /(0: l)$ is a Gorenstein algebra for a linear form l (or any non-zero element l). Does this have any meaning if we consider A as the cohomology ring of an algebraic variety?
15. Suppose that $A=K\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1}^{d}, \cdots, x_{n}^{d}\right)$. Let G be a subgroup in Σ_{n} generated by reflections. Assume that G leaves the element $x_{1}+\cdots+x_{n}$ invariant. Then A^{G} has a complete intersection with the SLP with a Lefschetz element l. Are there some cases where A^{G} have combinatorial meaning? For example if $G=\Sigma_{n}$, then A^{G} may be interpreted as the lattice of Young diagrams contained in a rectangle.
16. Consider the algebra

$$
A=K\left[x_{1}, \cdots, x_{n}\right] /\left(x_{1}^{d}-x_{2}^{d},, x_{2}^{d}-x_{3}^{d}, \cdots, x_{n-1}^{d}-x_{n}^{d}, x_{1}^{m}+\cdots+x_{n}^{m}\right) .
$$

For which (n, d, m), is A an Artinian ring? Suppose it is Artinian. Decompose the algebra A into irreducible modules as a module of Σ_{n}, where Σ_{n} is the symmetric group acting on A by permutation of the variables. We have done this for $m=d$.
17. Let $R=K\left[x_{1}, x_{2}, x_{3}\right]$ be the polynomial ring. Put

$$
p_{d}=x_{1}^{d}+x_{2}^{d}+x_{3}^{d} .
$$

For what choice of degrees i, j, k, is the algebra $A=R /\left(p_{i}, p_{j}, p_{k}\right)$ is a complete intersection. Conjecture is this: Suppose that $\operatorname{GCD}(i, j, k)=1$ without loss of generality. Then A is a complete intersection if and only if $i j k \equiv 0 \bmod 6$. The same question can be asked for complete symmetric polynomials for power sum symmetric functions.

