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Y WAY OF EXPLANATION for what might appear as a set of strange problems: my training as
B a mathematician was in algebraic topology in which I worked for something like 25 years
before being attracted to invariant theory ,..., which brings me to a WorkShop on Lefschetz
properties. A subject to which I am a newcomer. The problems that follow are needless to say
strongly influenced by this background, where characteristic p # 0 plays an important role.

Problems about Characteristic p # 0

BACKGROUND FOR PROBLEM 1: One of fundamental differences between algebra in char-
acteristic p # 0 as opposed to over fields of characteristic zero such as Q,R, or C is the
Frobenius homomorphism, A, which raises an element a to its p-th power A(a) = aP and
respects the linear structure. It leads to a rich and interesting theory reaching a high point in
the Frobenius functor F of C. Peskine and L. Szpiro [18]. The homomorphism A has lots of
nice properties, e.g., in a polynomial algebra S = F[z,..., z,] it preserves maximal primary
ideals;' if | = F[z1,..., z,] is @ maximal primary irreducible ideal then so is the ideal /P!
generated by the p-th powers of elements of  [19] (see [16] or [14] §I1.6). So the graded
analog? of the Frobenius functor F will preserve Poincaré duality quotient algebras of S.
However F seems not to preserve the strong Lefschetz property if n > 1.

PROBLEM 1: Let | & S = F[z,..., z,] be a maximal primary ideal such that 3/1 has the
weak Lefschetz property. Does S/| [P] have the weak Lefschetz property?

BACKGROUND FOR PROBLEM 2: Let F, be the finite field with g = p” elements where
p €N is a prime integer. Denote by S = F[V] the algebra of polynomial functionson V =T/}
and by z,..., z, a basis for the linear forms V", If | = S = Fylz1,..., z,] is @ maximal
primary irreducible ideal such that S/J has the strong Lefschetz property then A = S/[IP]
might not have the strong Lefschetz property if n > 1, but, if we form the quotient algebra
B = A/Ann,((z1 - 2o+ -+ z,)97!) then, at least, it contains a linear element £ all of whose
powers £ for i up to the top non zero degree of A are nonzero.® The algebra B just described
is what a topologist might refer to as the dual of (z; - zp---z,)9 71 in A (see e.g., [26] §5 for
why).

PROBLEM 2: With the previous notations and assumptions does the algebra B dual to
(z1-23---2,)9t in A have the strong Lefschetz property?

Proposition 3.9 of [6] seems relevent to this problem. An added complication though, even
if the answer were yes, is to find a direct description of a set of generators for the kernel J
of the map S— B in terms of generators for /; or what would be perhaps nicer, a functor
that takes / to J directly. If we knew a Macaulay dual (or apolar form, see the discussion of
Macaulay’s Inverse Systems to follow) 4 for / then §9 would be a Macaulay dual for J ; this
still leaves open the question about generators.

1 These are the ideals defining Gorenstein-Artin quotients of S.
2The construction of such a graded analog was shown to me by Nicole Nossem about ten years ago.
3 Certainly in an algebra with the Strong Lefschetz property there must be such an element.



Problems about Invariant Theory
For unexplained notations please see [20].

BACKGROUND FOR PROBLEM 3: A useful paradigm in representation theory (and eleswhere) | R I

is to think of the symmetric group ¥y, i.e., the permutations of the set [n] = {1,2,..., n},
as the general linear group of the field with one element: a set being regarded as a vector
space over this field. One then has a basis for seeking analogies. The invariant theory of
the symmetric group is fairly well worked out, and an analog of the Fundamental Theorem
on Symmetric Functions for the general linear group GL(n,F,) of the Galois field F, with
q = p” elements, p € N, was discovered by L.E. Dickson [4]. In modern language, if V =R/
is the n-dimensional vector space over the finite field F, and we define

o(X)= [[ (X-v)ePRqlz...., za][X]

veVH

then ®(X) is a g-polynomial in the sense of [17], so when written as a polynomial in X the
coefficients of X! all vanish except those where i is a power of q. The coefficients are clearly
invariant under the action of GL(n,F,) on F4[z1,..., z,]. So one can write*

n-1 )
(I)(X) = Z dn,[qu < Fq[21 . Zn]GL(n,IFq)[X]
i=0

defining the Dickson polynomials,® d,, ; € [z, ..., z,]®*("Fa) of degrees " — g/, for i =
0,1,...,n - 1. What Dickson showed is that the algebra of invariants D(n) =
Fylz1,..., zo]%"Fa) is a polynomial algebra generated by d,o,dn1,..., dpn-1- SO
Folz1..... za]/(dno, ..., dpn1) =Blz1, ..., Zn]G1(nF,) IS @ complete intersection algebra.
This is analagous to the Fundamental Theorem on Symmetric Polynomials which says that
F[x1,..., x,]*" is a polynomial algebra generated by the elementary symmetric polynomials
er,..., en s B[x1,..., xp etc.

PROBLEM 3: The Dickson coinvariant algebra [z, ..., Zn]cyn p,) IS @ complete inter-

section algebra. What Lefschetz properties does it have? How do they depend on the number
of field elements and the number of variables?

BACKGROUND FOR PROBLEM 4: In the same paper [27] of R. Steinberg discussed further
on under Problems from Macaulay’s Inverse System Steinberg proves that if the ring of coin-
variants C[V]¢ of a finite subgroup G < GL(n, Q) is a Poincaré duality algebra then C[V]9
is a polynomial algebra, so G[V]s was in fact a complete intersection. Here G denotes the
complex number field. Extending this to the nonmodular case (the case where the order OGO
of G is invertible in the field F) is not completely trivial, and was first done for finite fields
by T.-C. Lin in her Gottingen Doktorarbeit [11]. As a purely(?) invariant theory question one
has been confronted with the following problem for close to half a century.

PROBLEM 4: Are there, and if so what are they, analogs of Steinberg’s theorems in the mod-
ular case, i.e., the case where G < GL(n,F) and the characteristic of F divides the order OGO
of G ? Specifically;, ifR[V]s is a Poincaré duality algebra must it be a complete intersection?

To pharaphrase [6] the Lefschetz properties provide a new point of view and new tools to
study (co)invariant algebras. So perhaps they are of use in connection with this problem.

4The reason for the indexing is explained in [20] Chapter 6 where a proof of Dickson’s Theorem can also be found.

5Warning! In the theory of finite fields there are other polynomials refered to as Dickson polynomials: Namely the polynomials
in one variable over the field that as a function of the field elements act as a permutation.



The papers [5], [11], [22], [23], [24], and [25] are all contributions to solving this problem
and contain further references. It can happen that F[V] is a complete intersection without
F[V]Y being a polynomial algebra. In other words the Hilbert ideal b(G) < B[V], i.e., the
ideal generated by the invariant forms of strictly positive degree, might be generated by a
regular sequence, but yet B[V]“ need not a polynomial algebra; e.g., the Hilbert ideal of the
alternating subgroup A, of X, has this property in characteristic p if p < n.

Problems about Generalized Invariants

The study of the modular invariant theory of reflection groups led to the introduction of a
very interesting mechanism for construction complete intersection algebras as quotients of
F(z1,..., zn]. Briefly, this runs as follows (see e.g., [3], [7], or [15]).

An element s € GL(n,F) is a reflection if it has finite order Osand Im(s -1) & V isa 1-
dimensional subspace of V called the root space of s and denoted by Rs. A nonzero vector
xs € Im(s — 1) is called a root vector of s and ker(s — 1) the reflecting hyperplane of s
and is denoted by H,. The reflecting hyperplane of s is a codimension one subspace of V left
pointwise fixed by s. Hence s has 1 as an eigenvalue of multiplicity n —1 and its characteristic
polynomial p(X) splits into (X —1)""1(X —det(s)). Note that of the three quantities:

— areflection s € GL(n,F),

— aroot vector xs € V for the reflection s € GL(n,F),

— an axis £5 € V" for the reflection s € GL(n,F),
any two determine the third uniquely because of the basic equation

s(v)=v-4s(v)-xs OuvelV.
relating them. If s € GL(n,F) is a reflection we may write
s(f)=f+Ls-As(f) OfeB[V]
defining the operator A : F[V]— E[V] lowering degrees by one.

Given ¥ < GL(n,F), a nonempty set of reflections, we define®
1) = {FFIVI | Ag Ay () =0 T 81, Sueg €7}

Then I(¥) < E[V] is a (proper) ideal, an element f € F[V] belongs to /() if and only if
As(f) e I(¥) forall s € S, so I(¥) is closed under all the operations A for s € #, and if ¥
denotes the set of F-subspaces of F[V] which are closed under all the operations A for s € &
then /() is the unique maximal element in #. A result of V. Kac and D. Peterson [7] shows
that the ideal /() is generated by a regular sequence’ of length n so the quotient algebra
IE"1[V]/ [() is a standard graded complete intersection algebra.

PROBLEM 5: If Y < GL(n,F), is a nonempty set of reflections what Lefschetz properties,
if any, does the quotient algebra B[V]/1(:f) have?

This seems interesting even in characteistic zero, e.g., for F = G, since these examples of
complete intersections include the coinvariant algebras of the finite complex reflection groups.

6 Here F[V] denotes the augmentation ideal of F[V].
7 See also [15] §2; the essential point being a result of W. Vasconcelos [28].



Problems about Macaulay’s Theory of Inverse Systems?®
For unexplained notations please see [14].

BACKGROUND FOR PROBLEM 6: I will make use of Macaulay’s theory of modular systems
(see [12] and [13]) in the language of apolarity or inverse systems.® So,F[z;, ..., z,] denotes
a polynomial algebra over the field F with the standard grading and F[z;!, ..., z;!] a second
such algebra, but graded so thatdeg(z;!) =-1for i =1,..., n. The monomial z* zy? - - - z"
of B[z1,..., z,] is denoted by zE where E = (e1,e1,..., en) € N/ is an index sequence,
and similarly 277 = 712”2 ... z;/* for an inverse monomial in F[z;!,..., z;'], with F =
(fi,..., fn) € N§. The contraction pairing

- ~(E-F) if E - n
ZEmZFZ{Z if E-F e N, or

0 otherwise,
makes B[z !, ..., z;!] into a module over B[z, ..., z,] and ES. Macaulay showed that that
there is a bijective correspondence between cyclic submodules of the inverse polynomial alge-
bra F[z; 1, ..., z;}] and maximal primary irreducible ideals of S = [z, ..., z,] obtained by

taking annihilators with respect to the contraction pairing. As nice as this theory is it leaves
the following very basic problem almost untouched.

PROBLEM 6: Under what conditions on the inverse form 6 € B[z;1,..., z;}] will the cor-

responding ideal 1(§) < R[z,..., z,] be a complete intersection ideal?

Contrast this problem with the construction using A-operators from the preceeding sec-
tion which a priori yields complete intersections. For the Poincaré duality quotients of

F[z1,..., zy] one has in any case the additional problem.
PROBLEM 7: What conditions on the inverse form 0 < B[z;!, ..., z;!] guarantee that the
corresponding Poincaré duality algebraF|z1, ..., zn] /1(6) has one of the Lefschetz properties?

BACKGROUND FOR PROBLEM 8: In the paper [27] of R. Steinberg he shows how to construct
for a complex reflection group an additive basis for the ring of coinvariants G[V]5 as the
divisors of a basic harmonic form. For example, if G is the symmetric group acting in its
tautological representation on the set X = {xy,..., xp} this basis consists of the divisors of
the discriminant A, = [[;¢;qjc,(Xi = X;). To do this Steinberg essentially constructs'® an
apolar form for the Hilbert ideal h(G) of G. For some interesting examples in this connection
see [8]. Steinberg’s result!! has been extended to some modular cases in [2].

PROBLEM 8: What is the analog of Steinberg’s result in the modular case? In other words,
assume G < GL(n,F) has polynomial invariants and construct an apolar form for the Hilbert
ideal, i.e., the ideal generated by the invariant forms of strictly positive degreee. Relate that
form to the configuration of hyperplanes associated to the group and use it to construct (if pos-
sible) an B-basis for the coinvariant algebra B[V]s and determine what Lefschetz properties
that algebra has.

8 Also called Macaulay Duals, or Apolar Forms

9 Other formulations of this theory are possible; the most general known to me being in terms of local cohomology and the local
Duality Theorem for Gorenstein algebras. This is discussed briefly in [25].

10To do so he makes use of an existence theorem for meromorphic solutions to partial differential equations with analytic
coefficients: This is the partial differential equation refered to in the title of the paper. Is this analysis equivalent to Macaulay’s
algebraic theory of inverse / apolar elements in this context?

111t is implicitly mentioned in [6] §4.2 but I do not see where it was ever used in [6] : Was it? Does such a basis aide in verifying
one of the Lefschetz properties for the coinvariant algebra? Some of the combinatorial techniques in [2] look promising in this
direction.



See e.g., [6] Proposition 8.18, Problem 8.19, Remark 8.20, and Conjecture 8.24. The paper
[25] contains a modest attempt to address these problems.

Problems about Jordan Forms

BACKGROUND FOR PROBLEM 9: In [21] §19.1 it is argued that the similarity problem for
matrices cannot have an algebraic solution. Roughly the argument goes as follows. Two n x n
matrices A, B € Mat, , are similar if there is an invertible matrix P € Mat, , such that

(D B=P-A-P'.
By an algebraic solution to the problem of Jordan forms one might mean the following.
SIMILARITY PROBLEM: For each positive integer n find n? polynomial functions'?
fij : Mat, ,— @G, i,j=1,...,n,
such that for any matrix A € Mat,, , the matrix ( fij (A)) is the Jordan canonical form of A.

For this to work one would want that such functions f; ; satisfy f; ;(a,s) = fij(b,,s) whenever
the matrices A = (a,s) and B = (b, ) are related by an equation (0J). A moments thought
shows one can reformulate this in the following invariant theoretic way: Find finitely many
polynomial functions h; ;€ G [Matn,n]GL(”'C) , e, je ¥, suchthat two matrices A, B have the
same Jordan form if and only if h; ;j(a,s) = h;j(b,s) forallie f, je #,and 1<r, s<n. This
amounts to saying that the functions h; ; seperate the orbits of Mat, , under the conjugation
action of GL(n,G). This is not possible (see e.g., [21] Chapter 19), yet the method of [9]
provides a quasi—algebraic way to construct Jordan normal form projections, i.e., projections
onto the invariant subspaces where the matrix is represented by a single Jordan block, and
therefore provides the sizes of the blocks. What follows is sort of a philosophical problem
(perhaps only for me).

PROBLEM 9: Explain why the sl, method is therefore so successtull despite this in studying
the Jordan structure of nilpotent matrices arising from multiplication by a linear element 1
in a graded Artin algebra.
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